Tavola forata Montessori per la memorizzazione della moltiplicazione

Tavola forata Montessori per la memorizzazione della moltiplicazione. Presentazioni ed esercizi per bambini della scuola primaria.

Lo scopo di questo materiale è la memorizzazione del risultato di tutte le combinazioni ottenute ripetendo i numeri da 1 a 9, da una a 9 volte.

L’esercizio è così semplice che si può proporre a bambini fra i 5 anni e mezzo  e i 6 anni.

Si tratta di una tavoletta quadrata con 100 incavi (100 = 10 x 10), in ciascuno dei quali si può collocare una perla. In alto, come intestazione delle colonne verticali di incavi, sono stampati i numeri da 1 a 10. Nella parte sinistra della tavoletta, in posizione mediana, si trova un incavo nel quale è possibile inserire un cartoncino su cui è stampato in rosso uno dei numeri da 1 a 10. Questo cartoncino, che riveste il ruolo di moltiplicando, è intercambiabile. Nell’angolo in alto a sinistra c’è un grande incavo circolare, che serve ad alloggiare un gettone rosso che va collocato sui numeri che rappresentano le volte; questo gettone cambierà continuamente posto, seguendo la tabellina in azione. Completa il materiale una scatolina contenente 100 perle sciolte.

Tutto il materiale stampabile presente in questo articolo:

– moduli della moltiplicazione

– Tavola I della moltiplicazione

– cartellini delle moltiplicazioni da svolgere

– cartellini delle addizioni per la tavola forata della moltiplicazione

– moduli per la ricerca dei fattori

– cartellini dei prodotti 

è disponibile, pronto per la stampa, qui:

L’esercizio, come descritto da Maria Montessori, è molto semplice: supponiamo di voler moltiplicare il 6 per la serie dei numeri da 1 a 10. Avremo: 6 x 1, 6 x 2, 6 x 3, 6 x 4, 6 x 5, 6 x 6, 6 x 7, 6 x 8, 6 x 9, 6 x 10:

– inseriamo nella casella di sinistra il cartoncino col numero 6

Continua a leggere Tavola forata Montessori per la memorizzazione della moltiplicazione

OPERAZIONI VARIE PER la classe quarta

OPERAZIONI VARIE PER la classe quarta  della scuola primaria, scaricabili e stampabili gratuitamente in formato pdf: addizioni in colonna, sottrazioni in colonna, moltiplicazioni e divisioni, composizioni e scomposizioni, equivalenze, ecc…

OPERAZIONI VARIE PER LA classe quarta

___________________________

Questo è il contenuto delle schede

OPERAZIONI VARIE PER LA classe quarta

Addizioni

246 + 323 = (569)

618 + 211 = (829)

465 + 521 = (986)

754 + 232 = (986)

718 + 324 = (1.042)

842 + 469 = (1.311)

567 + 733 = (1.300)

934 + 168 = (1.102)

678 + 400 = (1.078)

973 + 500 = (1.473)

850 + 300 = (1.150)

550 + 750 = (1.300)

Continua a leggere OPERAZIONI VARIE PER la classe quarta

Moltiplicazione e divisione per 10 100 e 1000 di numeri decimali – esercizi

Moltiplicazione e divisione per 10 100 e 1000 di numeri decimali – esercizi per la classe terza della scuola primaria, disponibili gratuitamente in formato pdf.

Abbiamo visto che per moltiplicare per 10 un numero intero basta aggiungere uno zero a destra del numero. Ora invece moltiplicheremo per 10 un numero decimale. Ad esempio:

4,6 x 10 =

Poiché moltiplicando un numero per 10 ogni cifra che lo compone aumenta il suo valore di 10 volte, ecco che le 4 unità diventano 4 decine, e i 6 decimi diventano 6 unità. Perciò sarà necessario spostare la virgola di un posto verso destra, così:

4,6 x 10 = 46

Ricorda: per moltiplicare un numero decimale per 10 basta spostare la virgola di un posto verso destra.

Quando moltiplichiamo un numero decimale per 100, le cifre che lo compongono aumentano il loro valore di 100 volte. Ad esempio, nel caso di:

5,48 x 100 =

le 5 unità diventano centinaia, i 4 decimi diventano decine, gli 8 centesimi diventano unità. Perciò per moltiplicare un numero decimale per 100 è necessario spostare la virgola di due posti verso destra, così:

5,48 x 100 = 548

Se manca una cifra, si aggiunge uno zero. Ad esempio:

9,8 x 100 = 980

Ricorda: per moltiplicare un numero decimale per 100 basta spostare la virgola di due cifre verso destra. Se manca una cifra si aggiunge uno zero.

Moltiplichiamo ora un numero decimale per 1.000:

2,5 x 1.000 = 2500

Ricorda: per moltiplicare un numero decimale per 1.000 si sposta la virgola verso destra di tre cifre (quanti sono gli zeri del moltiplicatore). Se le cifre non bastano, si aggiungono degli zeri.

Dividendo un numero per 10  o per 100 o per 1.000 ogni cifra che lo compone diminuisce il suo valore di 10, 100 o 1.000 volte.

Nel caso di una divisione per 10, ad esempio:

342,5 : 10 = 34,25

le 3 centinaia diventano decine, le 4 decine diventano unità e le 2 unità diventano decimi; i 5 decimi diventano centesimi.

Nel caso di una divisione per 100, ad esempio:

342,5 : 100 = 3,425

le 3 centinaia diventano unità, le 4 decine diventano decimi, le 2 unità centesimi e i 5 decimi millesimi. Se le cifre non bastano, si aggiungono degli zeri. Ad esempio:

1,5 : 100 = 0,015

Nel caso di una divisione per 1.000 avremo ad esempio:

49,3 : 1.000 = 0,0493

Ricorda: per dividere un numero decimale per 10 o per 100, basta spostare la virgola di una o due cifre verso sinistra. Se le cifre non bastano si aggiungono degli zeri.

Per dividere un numero decimale per 1.000 si sposta la virgola, da destra verso sinistra, di tante cifre quanti sono gli zeri del divisore. Se le cifre non bastano, si aggiungono degli zeri.

Esercizi

Moltiplicazione e divisione per 10 100 e 1000 di numeri decimali
Continua a leggere Moltiplicazione e divisione per 10 100 e 1000 di numeri decimali – esercizi

Moltiplicazioni e divisioni per 10 100 1000 di numeri interi

Moltiplicazioni  e divisioni per 10 100 1000 di numeri interi – una raccolta di esercizi per bambini della classe terza della scuola primaria, stampabili gratuitamente in formato pdf.

Abbiamo visto che per dividere per 10 un numero intero terminante per zero, basta togliere lo zero dalla destra del numero. Ora invece divideremo per 10 un numero che non termina per zero:

35:10 =

Siccome, dividendo un numero per 10, ogni cifra diminuisce il suo valore di 10 volte, ecco che le 3 decine diverranno 3 unità e le 5 unità… diverranno 5 decimi. Sappiamo che i decimi si scrivono alla destra della virgola, perciò sarà necessario mettere la virgola, così:

35:10 = 3,5

Ricorda:

per dividere un numero intero per 10, si separa con la virgola una cifra, partendo dalla destra del numero.

__________________

Consideriamo questa divisione:

326 : 100 =

Siccome dividendo un numero per 100 ogni cifra diminuisce il suo valore di 100 volte, ecco che le 3 centinaia diventeranno 3 unità, le 2 decine diventeranno 2 decimi e le 6 unità diventeranno 6 centesimi. Sappiamo che i decimi ed i centesimi si scrivono a destra della virgola, perciò sarà necessario mettere la virgola, così:

326 : 100 = 3,26

Ricorda:

per dividere un numero intero per 100, si separano con la virgola due cifre, partendo dalla destra del numero.

_______________________

Consideriamo questa divisione:

1.324 : 1.000 =

Siccome dividendo un numero per 1.000 ogni cifra diminuisce il suo valore di 1.000 volte, ecco che un migliaio diventa 1 unità, le 3 centinaia diventeranno 3 decimi, le 2 decine diventeranno 2 centesimi e le 4 unità diventeranno 4 millesimi. Sappiamo che i decimi, i centesimi ed i millesimi si scrivono a destra della virgola, perciò sarà necessario mettere la virgola, così:

1.324 : 1.000 = 1,324

Ricorda:

per dividere un numero intero per 1.000, si separano con la virgola tre cifre, partendo dalla destra del numero.

________________________

Moltiplicazioni  e divisioni per 10 100 1000 di numeri interi

Esercizi

Moltiplicazioni e divisioni per 10 100 1000 di numeri interi

Questo è il contenuto:

Esegui:

Continua a leggere Moltiplicazioni e divisioni per 10 100 1000 di numeri interi

Operazioni e numerazioni per la 3a classe

Operazioni e numerazioni per la terza classe – esercizi pronti per la stampa in formato pdf.

Operazioni e numerazioni per la 3a classe – Questi sono tutti gli esercizi contenuti nelle schede:

Operazioni e numerazioni per la 3° classe

Numerazioni

Numera per 2 da 0 a 40

Numera per 3 da 0 a 60

Numera per 4 da 0 a 80

Numera per 5 da 0 a 100

Numera per 2 da 1 a 41

Numera per 3 da 1 a 61

Numera per 4 da 1 a 81

Numera per 5 da 1 a 101

Numera per 2 da 40 a 0

Numera per 3 da 60 a 0

Continua a leggere Operazioni e numerazioni per la 3a classe

Un metodo grafico per la moltiplicazione

…un gioco grafico per eseguire le moltiplicazioni tra numeri a due o a tre cifre, noto come moltiplicazione vedica…

I bambini trovano questo gioco grafico molto interessante, e presenta notevoli vantaggi. Lo consiglio perchè:

– può essere proposto ai bambini a partire dalla seconda o terza di scuola primaria, anche se non sanno ancora moltiplicare con grandi numeri, perchè consente di esercitare l’addizione e le tabelline , e anche il contare, il tutto con la possibilità di autocontrollo dell’errore (basta confrontare il risultato con quello una calcolatrice 🙂 )

– naturalmente può essere proposto poi ai bambini e ai ragazzi della scuola secondaria, come variante del procedimento classico di moltiplicazione, o anche come “prova”

– è un esercizio che migliora le capacità di orientamento spaziale e l’ordine

– è molto gratificante anche in termini estetici

– fa sentire molto bravi in matematica, trovandosi in grado di lavorare anche con grandi numeri.

______________

Cominciamo con l’esempio più semplice, e moltiplichiamo 12 x 32 =

Per il 12 tracciamo una riga orizzontale in alto (corrispondente alla prima cifra 1)

e due righe orizzontali in basso corrispondenti alla cifra 2:

Poi  tre linee verticali corrispondenti alla cifra 3 del 32:

e, più a destra, due linee verticali corrispondenti alla cifra 2 del 32:

Ora delimitiamo alcune specifiche zone del nostro bel disegno isolando due angoli, così:

e contiamo disegnando un puntino in corrispondenza dei punti di intersezione delle linee, per ognuna delle tre zone delimitate (i due angoli e la zona centrale):

Controlliamo con la calcolatrice, e sì: 12 x 32 fa proprio 384 !

Questo esempio è scelto appositamente perchè contiene solo le cifre 1 2 e 3, ma il gioco grafico funziona con qualsiasi cifra… se il conteggio dei puntini dà risultati a due cifre, però, occorre aggiungere un ulteriore passo alla procedura.

Moltiplichiamo ora 46 x 53

Per prima cosa tracciamo le linee orizzontali corrispondenti al 46, e quelle verticali corrispondenti al 53, come spiegato sopra:

Poi delimitiamo le tre aree del disegno:

Continua a leggere Un metodo grafico per la moltiplicazione

Moltiplicazioni e divisioni coi numeri decimali – Esercizi

Moltiplicazioni con numeri decimali – Esercizi

327,5 x 12,6 = 4.126,50

658,05 x 42,6 = 28.032,93

42,8 x 32,35 = 1.384,58

548,6 x 32,35 = 17.862,416

535,8 x 45,9 = 24.593,22

509,06 x 30,4 = 15.475,424

568,38 x 6,5 = 3.6994,47

327,45 x 9,8 = 3.209,01

432,5 x 17,7 = 7.655,25

794,5 x 84,65 = 67.254,425

Divisioni con numeri decimali:

54.181,824 : 9,6 = 5.643,94

435,948 : 0,37 = 1.178,2 (resto 14)

2.329,884 : 0,94 = 2.478,6

638,375 : 0,93 = 686,4 (resto 23)

268.364,04 : 6,8 = 39.465,3

9.553,352 : 8,2 = 1.165,04 (resto 24)

7.432,6 : 1,7 = 4.372 (resto 2)

12.328,5 : 0,35 = 35.224 (resto 10)

4.575,466 . 0,78 = 5.865,9 (resto 64)

6.981,64 : 0,68 = 10.267 (resto 8)